TY - JOUR
T1 - The nordhaus-gaddum-type inequalities for the zagreb index and co-index of graphs
AU - Sua, Guifu
AU - Xiong, Liming
AU - Xu, Lan
PY - 2012/11
Y1 - 2012/11
N2 - Let k ≤ 2 be an integer, a k-decomposition (G1, G 2, . . . , Gk) of the complete graph Kn is a partition of its edge set to form k spanning subgraphs G1, G2, . . . , Gk. In this contribution, we investigate the Nordhaus-Gaddum-type inequality of a k-decomposition of Kn for the general Zagreb index and a 2-decomposition for the Zagreb co-indices, respectively. The corresponding extremal graphs are characterized.
AB - Let k ≤ 2 be an integer, a k-decomposition (G1, G 2, . . . , Gk) of the complete graph Kn is a partition of its edge set to form k spanning subgraphs G1, G2, . . . , Gk. In this contribution, we investigate the Nordhaus-Gaddum-type inequality of a k-decomposition of Kn for the general Zagreb index and a 2-decomposition for the Zagreb co-indices, respectively. The corresponding extremal graphs are characterized.
KW - Nordhaus-Gaddum-type inequality
KW - The Zagreb co-index
KW - The general Zagreb index
UR - http://www.scopus.com/inward/record.url?scp=84865627622&partnerID=8YFLogxK
U2 - 10.1016/j.aml.2012.01.041
DO - 10.1016/j.aml.2012.01.041
M3 - Article
AN - SCOPUS:84865627622
SN - 0893-9659
VL - 25
SP - 1701
EP - 1707
JO - Applied Mathematics Letters
JF - Applied Mathematics Letters
IS - 11
ER -