Abstract
The hydroxylated and reduced rutile TiO2(011)-2 × 1 surfaces have been investigated by means of first-principles density functional theory calculations. For the H adsorption and O vacancy on the rutile TiO 2(011)-2 × 1 surface, we investigated three different surface O sites. Based on the adsorption and formation energy calculations, we find that the top O is an energetically preferential site for the adsorption of H atom or the formation of O vacancy. The calculated electronic structures indicate that the energetically preferential O site cannot create a band gap state; only the O vacancy at the side O site gives rise to a Ti-3d like defect level at the edge of the conduction band. It is worth mentioning that all considered configurations of the H adsorption and O vacancy on the rutile TiO 2(011)-2 × 1 surface obviously enhance the optical absorptions in the areas of infrared, not just the rutile TiO2(011)-2 × 1 surface only has a good absorption edge in the visible light region.
Original language | English |
---|---|
Pages (from-to) | 126-131 |
Number of pages | 6 |
Journal | Surface Science |
Volume | 628 |
DOIs | |
Publication status | Published - Oct 2014 |
Keywords
- Electronic properties
- Hydrogen adsorption
- Optical properties
- Oxygen vacancy