Abstract
An improved shear-lag model is developed in this paper to study the effects of interface roughness on the mechanical properties of unidirectional fiber-reinforced polymer composites with a staggered structure, in which the roughness is incorporated by establishing equilibrium equations for the fiber platelets with varying thickness along its axial direction. The stress transfer and effective Young's modulus of composites are mainly investigated due to the influence of fiber's surface roughness. Since the polymer matrix can be chosen as thermoplastic or thermosetting materials, a uniformly interfacial shear stress distribution due to the frictional transfer along fiber/matrix interfaces and a non-uniformly one due to the elastic transfer are analyzed, respectively. It is found that when the surface roughness becomes larger, fibers in the former will carry more tensile loads, while the tensile loads keep almost invariant in fibers and the shear stress reduces in matrix in the latter. Moreover, the effective Young's modulus of composites will be enhanced due to increasing fiber's surface roughness. However, the enhancing effect will gradually reduce with an increasing aspect ratio of fibers. The results should be very useful for the design of novel fiber-reinforced polymer composites, especially for those that needed interfacial modifications in order to improve the interfacial adhesion, for example, carbon-fiber reinforced polymer composites.
Original language | English |
---|---|
Pages (from-to) | 2909-2923 |
Number of pages | 15 |
Journal | Journal of Composite Materials |
Volume | 47 |
Issue number | 23 |
DOIs | |
Publication status | Published - Oct 2013 |
Externally published | Yes |
Keywords
- Fiber-reinforced polymer composites
- effective Young's modulus
- interface roughness
- shear-lag model
- stress transfer