TY - JOUR
T1 - Synthesis and properties of polyurethane/coal-derived carbon foam phase change composites for thermal energy storage
AU - Wu, Wen Hao
AU - Huang, Xin Yu
AU - Yao, Rui Min
AU - Chen, Ren Jie
AU - Li, Kai
AU - Zou, Ru Qiang
N1 - Publisher Copyright:
© Editorial office of Acta Physico-Chimica Sinica.
PY - 2017
Y1 - 2017
N2 - In this article, we used coal-derived carbon foam (CCF) as a skeleton material to encapsulate the solid-to-solid phase change material polyurethane (PU) to provide PU@CCF composites for functional applications. The obtained PU@CCF composites were characterized by field-emission scanning electron microscopy (SEM), transmission electron microscopy (TEM), powder X-ray diffraction (PXRD), Fourier transform infrared (FT-IR) spectroscopy, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and thermal conductivity measurements. The results illustrated that the most preferred ratio of polyethylene glycol (PEG-6000) to hexamethylene diisocyanate (HDI) to synthesize PU was 1: 2 and the CCF skeleton prevented PU leakage during the phase change process. Compared with PEG-6000, the thermal conductivity of the PU@CCF composite was raised by 54%, its cycle thermal stability was remarkable after 2000 cycles, and its supercooling degree was lowered by more than 10 ° C. For electro-to-heat energy conversion, the phase transition behavior of the obtained PU@CCF could be induced under an electron voltage as low as 0.8 V with 75% conversion efficiency at 1.1 V. This functional phase change composite realizes electric-heat conversion under the lowest loading voltage reported to date, providing an important benchmark for the preparation and functionalization of low-cost phase change composites.
AB - In this article, we used coal-derived carbon foam (CCF) as a skeleton material to encapsulate the solid-to-solid phase change material polyurethane (PU) to provide PU@CCF composites for functional applications. The obtained PU@CCF composites were characterized by field-emission scanning electron microscopy (SEM), transmission electron microscopy (TEM), powder X-ray diffraction (PXRD), Fourier transform infrared (FT-IR) spectroscopy, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and thermal conductivity measurements. The results illustrated that the most preferred ratio of polyethylene glycol (PEG-6000) to hexamethylene diisocyanate (HDI) to synthesize PU was 1: 2 and the CCF skeleton prevented PU leakage during the phase change process. Compared with PEG-6000, the thermal conductivity of the PU@CCF composite was raised by 54%, its cycle thermal stability was remarkable after 2000 cycles, and its supercooling degree was lowered by more than 10 ° C. For electro-to-heat energy conversion, the phase transition behavior of the obtained PU@CCF could be induced under an electron voltage as low as 0.8 V with 75% conversion efficiency at 1.1 V. This functional phase change composite realizes electric-heat conversion under the lowest loading voltage reported to date, providing an important benchmark for the preparation and functionalization of low-cost phase change composites.
KW - Carbon foam
KW - Electro-to-heat energy conversion
KW - Phase change material
KW - Thermal conductivity
KW - Thermal energy storage
UR - http://www.scopus.com/inward/record.url?scp=85008177669&partnerID=8YFLogxK
U2 - 10.3866/PKU.WHXB201610181
DO - 10.3866/PKU.WHXB201610181
M3 - Article
AN - SCOPUS:85008177669
SN - 1000-6818
VL - 33
SP - 255
EP - 261
JO - Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica
JF - Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica
IS - 1
ER -