Abstract
Precisely controlled distribution of energy in solar-to-thermal energy conversion systems could allow for enhanced energy utilization. Light-absorbing hydrogels provide a means for evaporating water by using solar energy, yet targeted delivery of solar thermal energy to power the water evaporation process remains challenging. Here, we report a light-absorbing sponge-like hydrogel (LASH) that is created by in situ gelation of a light-absorbing nanoparticle-modified polymer, leading to synergistic energy nanoconfinement and water activation. By experimental demonstration and theoretical simulation, the LASH presents record high vapor generation rates up to ∼3.6 kg m-2 h-1 and stable long-term performance under 1 sun (1 kW m-2) irradiation. We investigate the energy confinement at the polymer-nanoparticle interphases and the water activation enabled by polymer-water interaction to reveal the significance of such effects for high-rate solar vapor generation. The water vaporization enabled by LASHs can remove over 99.9% of salt ions in seawater through solar water desalination. The fundamental design principle, scalable fabrication route, and superior performance offer possibilities for portable solar water purification, industrial solar-powered water treatment, and other advanced solar thermal applications.
Original language | English |
---|---|
Pages (from-to) | 7913-7919 |
Number of pages | 7 |
Journal | ACS Nano |
Volume | 13 |
Issue number | 7 |
DOIs | |
Publication status | Published - 23 Jul 2019 |
Externally published | Yes |
Keywords
- energy confinement
- hydrogel
- solar desalination
- solar vapor generation
- water purification