Structural anisotropy effect on the nanoscratching of monocrystalline 6H-silicon carbide

Zhonghuai Wu, Liangchi Zhang*, Weidong Liu

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

34 Citations (Scopus)

Abstract

Monocrystalline 6H-silicon carbide is a promising material for advanced components and devices; but is also a difficult-to-machine material due to its hardness, brittleness and structural anisotropy. With the aid of large-scale molecular dynamics simulations, this paper comprehensively studied the structural anisotropy effect on the nanoscratching of 6H–SiC. Six typical combinations of scratching plane and direction were selected, namely, (0001)<112‾0>, (0001)<11‾00>, (112‾0)<11‾00>, (112‾0)<0001>, (11‾00)<0001> and (11‾00)<112‾0>. It was found that the scratching-induced deformation morphology, activated dislocations and scratching forces varied significantly under different combinations of scratching conditions due to the strong anisotropy effect of the material. By evaluating the actual depth of cut, elastic recovery, surface roughness and maximum subsurface damage depth, basal plane (0001) along <11‾00> direction was identified as the best combination for conducting nanoscratching on 6H–SiC. Corresponding high-resolution TEM results show that the mechanism revealed by the MD analysis reflects the true deformation of the material.

Original languageEnglish
Article number203677
JournalWear
Volume476
DOIs
Publication statusPublished - 15 Jul 2021
Externally publishedYes

Keywords

  • Deformation mechanism
  • Ductile-regime machining
  • Nanoscratching
  • Silicon carbide
  • Structural anisotropy

Fingerprint

Dive into the research topics of 'Structural anisotropy effect on the nanoscratching of monocrystalline 6H-silicon carbide'. Together they form a unique fingerprint.

Cite this