Stochastic Lagrangian Particle Approach to Fractal Navier-Stokes Equations

Xicheng Zhang*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

32 Citations (Scopus)

Abstract

In this article we study the fractal Navier-Stokes equations by using the stochastic Lagrangian particle path approach in Constantin and Iyer (Comm Pure Appl Math LXI:330-345, 2008). More precisely, a stochastic representation for the fractal Navier-Stokes equations is given in terms of stochastic differential equations driven by Lévy processes. Based on this representation, a self-contained proof for the existence of a local unique solution for the fractal Navier-Stokes equation with initial data in W 1,p is provided, and in the case of two dimensions or large viscosity, the existence of global solutions is also obtained. In order to obtain the global existence in any dimensions for large viscosity, the gradient estimates for Lévy processes with time dependent and discontinuous drifts are proved.

Original languageEnglish
Pages (from-to)133-155
Number of pages23
JournalCommunications in Mathematical Physics
Volume311
Issue number1
DOIs
Publication statusPublished - Apr 2012
Externally publishedYes

Fingerprint

Dive into the research topics of 'Stochastic Lagrangian Particle Approach to Fractal Navier-Stokes Equations'. Together they form a unique fingerprint.

Cite this