Abstract
The main result of this note is the existence of martingale solutions to the stochastic heat equation (SHE) in a Riemannian manifold by using suitable Dirichlet forms on the corresponding path/loop space. Moreover, we present some characterizations of the lower bound of the Ricci curvature by functional inequalities of various associated Dirichlet forms.
Original language | English |
---|---|
Pages (from-to) | 205-213 |
Number of pages | 9 |
Journal | Atti della Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali, Rendiconti Lincei Matematica E Applicazioni |
Volume | 29 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2018 |
Keywords
- Functional inequality
- Quasi-regular Dirichlet form
- Ricci curvature
- Stochastic heat equation
Fingerprint
Dive into the research topics of 'Stochastic heat equations with values in a Riemannian manifold'. Together they form a unique fingerprint.Cite this
Röckner, M., Wu, B., Zhu, R., & Zhu, X. (2018). Stochastic heat equations with values in a Riemannian manifold. Atti della Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali, Rendiconti Lincei Matematica E Applicazioni, 29(1), 205-213. https://doi.org/10.4171/RLM/801