Abstract
Limited resolution is one of the most important factors hindering the application of remote sensing images (RSIs). Single-image super resolution (SISR) is a technique to improve the spatial resolution of digital images and has attracted the attention of many researchers. In recent years, with the advancement of deep learning (DL) frameworks, many DL-based SISR models have been proposed and achieved state-of-the-art performance; however, most SISR models for RSIs use the bicubic downsampler to construct low-resolution (LR) and high-resolution (HR) training pairs. Considering that the quality of the actual RSIs depends on a variety of factors, such as illumination, atmosphere, imaging sensor responses, and signal processing, training on “ideal” datasets results in a dramatic drop in model performance on real RSIs. To address this issue, we propose to build a more realistic training dataset by modeling the degradation with blur kernels and imaging noises. We also design a novel residual balanced attention network (RBAN) as a generator to estimate super-resolution results from the LR inputs. To encourage RBAN to generate more realistic textures, we apply a UNet-shape discriminator for adversarial training. Both referenced evaluations on synthetic data and non-referenced evaluations on actual images were carried out. Experimental results validate the effectiveness of the proposed framework, and our model exhibits state-of-the-art performance in quantitative evaluation and visual quality. We believe that the proposed framework can facilitate super-resolution techniques from research to practical applications in RSIs processing.
Original language | English |
---|---|
Article number | 2895 |
Journal | Remote Sensing |
Volume | 14 |
Issue number | 12 |
DOIs | |
Publication status | Published - 1 Jun 2022 |
Keywords
- balanced attention
- deep learning (DL)
- real-world degradation
- remote sensing images (RSIs)
- super resolution (SR)