Self-supervised learning minimax entropy domain adaptation for the underwater target recognition

Jirui Yang, Shefeng Yan*, Di Zeng, Gang Tan

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

5 Citations (Scopus)
Plum Print visual indicator of research metrics
  • Citations
    • Citation Indexes: 3
  • Captures
    • Readers: 4
  • Mentions
    • News Mentions: 1
see details

Abstract

With wide research of intelligent methods, studies on underwater target recognition have been making rapid progress. However, various marine conditions may cause data distribution mismatch between the collected signal sets, reducing model recognition performance. To mitigate the negative impact of data divergence, this paper uses the domain adaptation methods in target recognition and proposes an improved domain adaptation frame, self-supervised learning minimax entropy. Firstly, based on the minimax entropy method (MME), the prediction consistency is utilized to determine pseudo-labels, and the loss weight is introduced to deal with the misaligned target domain data. Then, a self-supervised learning mechanism is designed to ensure consistency of prediction results during training. Three different features, including the constant-Q transform (CQT), Mel spectrum, and Mel-frequency cepstral coefficient (MFCC), are used to verify the performance of domain adaptation methods. The experimental results show that applying domain adaptations can effectively improve the recognition performance of the models under most experimental conditions, and the improved frame has higher average recognition accuracy than other domain adaptation methods in the experiments.

Original languageEnglish
Article number109725
JournalApplied Acoustics
Volume216
DOIs
Publication statusPublished - 15 Jan 2024
Externally publishedYes

Keywords

  • Deep learning
  • Domain adaptation
  • Self-supervised learning mechanism
  • Underwater target recognition

Fingerprint

Dive into the research topics of 'Self-supervised learning minimax entropy domain adaptation for the underwater target recognition'. Together they form a unique fingerprint.

Cite this

Yang, J., Yan, S., Zeng, D., & Tan, G. (2024). Self-supervised learning minimax entropy domain adaptation for the underwater target recognition. Applied Acoustics, 216, Article 109725. https://doi.org/10.1016/j.apacoust.2023.109725