Self-supervised learning exposure correction via histogram equalization prior

Lu Li, Daoyu Li, Shuai Wang, Qiang Jiao, Liheng Bian*

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Poor lighting conditions in the real world may lead to ill-exposure in captured images which suffer from compromised aesthetic quality and information loss for post-processing. Recent exposure correction works address this problem by learning the mapping from images of multiple exposure intensities to well-exposed images. However, it requires a large number of paired training data, which is hard to implement for certain data-inaccessible scenarios. This paper presents a highly robust exposure correction method based on self-supervised learning. Specifically, two sub-networks are designed to deal with under- and over-exposed regions in ill-exposed images respectively. This hybrid architecture enables adaptive ill-exposure correction. Then, a fusion module is employed to fuse the under-exposure corrected image and the over-exposure corrected image to obtain a well-exposed image with vivid color and clear textures. Notably, the training process is guided by histogram-equalized images with the application of histogram equalization prior (HEP), which means that the presented method only requires ill-exposed images as training data. Extensive experiments on real-world image datasets validate the robustness and superiority of this technique.

Original languageEnglish
Title of host publicationOptoelectronic Imaging and Multimedia Technology IX
EditorsQionghai Dai, Tsutomu Shimura, Zhenrong Zheng
PublisherSPIE
ISBN (Electronic)9781510657007
DOIs
Publication statusPublished - 2022
EventOptoelectronic Imaging and Multimedia Technology IX 2022 - Virtual, Online, China
Duration: 5 Dec 202211 Dec 2022

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume12317
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X

Conference

ConferenceOptoelectronic Imaging and Multimedia Technology IX 2022
Country/TerritoryChina
CityVirtual, Online
Period5/12/2211/12/22

Keywords

  • Self-supervised learning
  • exposure correction
  • histogram equalization prior
  • image enhancement

Fingerprint

Dive into the research topics of 'Self-supervised learning exposure correction via histogram equalization prior'. Together they form a unique fingerprint.

Cite this