Robustness can be cheap: A highly efficient approach to discover outliers under high outlier ratios

Siqi Wang, En Zhu*, Xiping Hu, Xinwang Liu, Qiang Liu, Jianping Yin, Fei Wang

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

5 Citations (Scopus)

Abstract

Efficient detection of outliers from massive data with a high outlier ratio is challenging but not explicitly discussed yet. In such a case, existing methods either suffer from poor robustness or require expensive computations. This paper proposes a Low-rank based Efficient Outlier Detection (LEOD) framework to achieve favorable robustness against high outlier ratios with much cheaper computations. Specifically, it is worth highlighting the following aspects of LEOD: (1) Our framework exploits the low-rank structure embedded in the similarity matrix and considers inliers/outliers equally based on this low-rank structure, which facilitates us to encourage satisfying robustness with low computational cost later; (2) A novel re-weighting algorithm is derived as a new general solution to the constrained eigenvalue problem, which is a major bottleneck for the optimization process. Instead of the high space and time complexity (O((2n)2)/O((2n)3)) required by the classic solution, our algorithm enjoys O(n) space complexity and a faster optimization speed in the experiments; (3) A new alternative formulation is proposed for further acceleration of the solution process, where a cheap closed-form solution can be obtained. Experiments show that LEOD achieves strong robustness under an outlier ratio from 20% to 60%, while it is at most 100 times more memory efficient and 1000 times faster than its previous counterpart that attains comparable performance. The codes of LEOD are publicly available at https://github.com/demonzyj56/LEOD.

Original languageEnglish
Title of host publication33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019
PublisherAAAI press
Pages5313-5320
Number of pages8
ISBN (Electronic)9781577358091
Publication statusPublished - 2019
Externally publishedYes
Event33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Annual Conference on Innovative Applications of Artificial Intelligence, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019 - Honolulu, United States
Duration: 27 Jan 20191 Feb 2019

Publication series

Name33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019

Conference

Conference33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Annual Conference on Innovative Applications of Artificial Intelligence, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019
Country/TerritoryUnited States
CityHonolulu
Period27/01/191/02/19

Fingerprint

Dive into the research topics of 'Robustness can be cheap: A highly efficient approach to discover outliers under high outlier ratios'. Together they form a unique fingerprint.

Cite this