TY - JOUR
T1 - Reduced Graphene Oxide/ZIF-67 Aerogel Composite Material for Uranium Adsorption in Aqueous Solutions
AU - Zhao, Menghui
AU - Tesfay Reda, Alemtsehay
AU - Zhang, Dongxiang
N1 - Publisher Copyright:
Copyright © 2020 American Chemical Society.
PY - 2020/4/14
Y1 - 2020/4/14
N2 - Safe and sustainable development of the nuclear industry has become the focus of attention, so it is important to manage byproducts of radioactive elements, such as uranium, which is inevitably discharged into water bodies. In this work, an adsorbent was fabricated by the in-site assembly of zeolitic imidazolate framework-67 (ZIF-67) on reduced graphene oxide (rGO) hydrogel. The adsorption property of the rGO/ZIF-67 aerogel toward U(VI) was studied via batch adsorption experiment. According to kinetic fitting tests, the adsorption property was in accord well with the pseudo-second-order model, revealing that the adsorption process was chemisorption; the results of the isothermal model conform to the Langmuir model, which exhibited an excellent adsorption capacity of 1888.55 mg/g. The thermodynamic parameter (ΔH° = 11.7 kJ/mol) obtained from the experimental data demonstrated that temperature rise is favorable for the adsorption. Based on the characterization of the material and results of the adsorption, the adsorption mechanism for U(VI) may be explained by surface complexation and electrostatic attraction. In general, all these results and characteristics of the adsorbent show that the rGO/ZIF-67 aerogel provides an alternative way to fabricate novel uranium adsorbent.
AB - Safe and sustainable development of the nuclear industry has become the focus of attention, so it is important to manage byproducts of radioactive elements, such as uranium, which is inevitably discharged into water bodies. In this work, an adsorbent was fabricated by the in-site assembly of zeolitic imidazolate framework-67 (ZIF-67) on reduced graphene oxide (rGO) hydrogel. The adsorption property of the rGO/ZIF-67 aerogel toward U(VI) was studied via batch adsorption experiment. According to kinetic fitting tests, the adsorption property was in accord well with the pseudo-second-order model, revealing that the adsorption process was chemisorption; the results of the isothermal model conform to the Langmuir model, which exhibited an excellent adsorption capacity of 1888.55 mg/g. The thermodynamic parameter (ΔH° = 11.7 kJ/mol) obtained from the experimental data demonstrated that temperature rise is favorable for the adsorption. Based on the characterization of the material and results of the adsorption, the adsorption mechanism for U(VI) may be explained by surface complexation and electrostatic attraction. In general, all these results and characteristics of the adsorbent show that the rGO/ZIF-67 aerogel provides an alternative way to fabricate novel uranium adsorbent.
UR - http://www.scopus.com/inward/record.url?scp=85082877493&partnerID=8YFLogxK
U2 - 10.1021/acsomega.0c00089
DO - 10.1021/acsomega.0c00089
M3 - Article
AN - SCOPUS:85082877493
SN - 2470-1343
VL - 5
SP - 8012
EP - 8022
JO - ACS Omega
JF - ACS Omega
IS - 14
ER -