TY - JOUR
T1 - Pyrolysis Kinetics and Combustion Behaviors of a High-Nitrogen Compound, 4,4′-Azobis(1,2,4-triazole)
AU - Pan, Qi
AU - Zhang, Honglei
AU - Guo, Xueyong
AU - Sun, Sen
AU - Li, Shenghua
N1 - Publisher Copyright:
© 2022 by the authors.
PY - 2022/10
Y1 - 2022/10
N2 - To study the thermal decomposition behavior of 4,4′-azobis(1,2,4-triazole) (ATRZ), the non-isothermal thermal decomposition kinetics of ATRZ were studied using the thermogravimetric–differential scanning calorimetry (TG–DSC) method. The TG–DSC of ATRZ was analyzed at heating rates of 5, 10, 15, and 20 K·min−1 in an argon atmosphere. The thermal decomposition kinetic parameters at peak temperature (Tp), such as apparent activation energy (Ea) and pre-exponential factor (lgA) of ATRZ, were calculated using the Kissinger, Ozawa, and Satava–Sestak methods. Ea and lgA calculated using the Kissinger, Ozawa, and Satava–Sestak methods are very close, at 780.2 kJ·mol−1/70.5 s−1, 751.1 kJ·mol−1/71.8 s−1, and 762.1 kJ·mol−1/71.8 s−1, respectively. Using a combination of three methods, the reaction mechanism function g(α) of ATRZ was obtained. The results show that the decomposition temperature of ATRZ is about 310 °C, and the decomposition is rapidly exothermic. The pyrolysis path of ATRZ was investigated through a pyrolysis-gas chromatography mass spectrometry (PY-GC/MS) experiment. ATRZ has three different decomposition paths and finally generates N2, HC-N-CH, N≡C-N, and HC=N-C≡N. The laser ignition combustion duration of ATRZ was 0.5033 s and the peak temperature was 1913 °C. The laser ignition combustion duration of ATRZ+CL-20 was 1.0277 s and the peak temperature was 2105 °C. The rapid energy release rate of ATRZ promotes the combustion energy release of CL-20.
AB - To study the thermal decomposition behavior of 4,4′-azobis(1,2,4-triazole) (ATRZ), the non-isothermal thermal decomposition kinetics of ATRZ were studied using the thermogravimetric–differential scanning calorimetry (TG–DSC) method. The TG–DSC of ATRZ was analyzed at heating rates of 5, 10, 15, and 20 K·min−1 in an argon atmosphere. The thermal decomposition kinetic parameters at peak temperature (Tp), such as apparent activation energy (Ea) and pre-exponential factor (lgA) of ATRZ, were calculated using the Kissinger, Ozawa, and Satava–Sestak methods. Ea and lgA calculated using the Kissinger, Ozawa, and Satava–Sestak methods are very close, at 780.2 kJ·mol−1/70.5 s−1, 751.1 kJ·mol−1/71.8 s−1, and 762.1 kJ·mol−1/71.8 s−1, respectively. Using a combination of three methods, the reaction mechanism function g(α) of ATRZ was obtained. The results show that the decomposition temperature of ATRZ is about 310 °C, and the decomposition is rapidly exothermic. The pyrolysis path of ATRZ was investigated through a pyrolysis-gas chromatography mass spectrometry (PY-GC/MS) experiment. ATRZ has three different decomposition paths and finally generates N2, HC-N-CH, N≡C-N, and HC=N-C≡N. The laser ignition combustion duration of ATRZ was 0.5033 s and the peak temperature was 1913 °C. The laser ignition combustion duration of ATRZ+CL-20 was 1.0277 s and the peak temperature was 2105 °C. The rapid energy release rate of ATRZ promotes the combustion energy release of CL-20.
KW - ATRZ
KW - combustion
KW - thermal analysis
KW - thermal properties
UR - http://www.scopus.com/inward/record.url?scp=85139878682&partnerID=8YFLogxK
U2 - 10.3390/ijms231911313
DO - 10.3390/ijms231911313
M3 - Article
C2 - 36232615
AN - SCOPUS:85139878682
SN - 1661-6596
VL - 23
JO - International Journal of Molecular Sciences
JF - International Journal of Molecular Sciences
IS - 19
M1 - 11313
ER -