Pyrolysis and oxidation of benzene and cyclopentadiene by NOx: a ReaxFF molecular dynamics study

Ying Wang, Lei Zhou, Qian Mao*, Zhanyuan Wang, Haiqiao Wei*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)

Abstract

Benzene (C6H6) and 1,3-cyclopentadiene (c-C5H6) are critical intermediate species in the combustion of fossil fuel and the formation of polycyclic aromatic hydrocarbons (PAHs). This study investigates the underlying mechanisms of pyrolysis and oxidation of C6H6 and c-C5H6 in the presence of O2, NO and NO2, respectively, under combustion conditions via ReaxFF molecular dynamics simulations. The size growth in the pyrolysis system is accompanied by an amorphous nature as well as an increase in the C/H ratio. In the oxidation sytems, NO2 is the most effective in the oxidation of both C6H6 and c-C5H6, followed by NO and O2. In the presence of NOx, O and N radicals generated in the high-temperature decomposition reactions of NO and NO2 are actively involved in the addition and H-abstraction reactions of C6H6 and c-C5H6. Remarkably, the decomposition of NO2 dramatically increases the number of O radicals in the system, which significantly accelerates the ring-opening of C6H6 and c-C5H6 by O-addition and forms linear-C6H6O and C5H6O species, respectively. Afterwards, the formation of -CH2- by H-transfer plays an essential role in the decomposition of linear-C6H6O and -C5H6O. Reaction pathways of O and N radicals with C6H6 and c-C5H6 are reported in detail. The O and N-addition of C6H6 facilitate the decomposition to resonance-stabilized cyclopentadienyl radicals after the restructuring of the C-C bond.

Original languageEnglish
JournalPhysical Chemistry Chemical Physics
DOIs
Publication statusAccepted/In press - 2023

Fingerprint

Dive into the research topics of 'Pyrolysis and oxidation of benzene and cyclopentadiene by NOx: a ReaxFF molecular dynamics study'. Together they form a unique fingerprint.

Cite this