Abstract
Piezoelectricity in macromolecule polymers has been gaining immense attention, particularly for applications in biocompatible, implantable, and flexible electronic devices. This paper introduces core-shell-structured piezoelectric polyvinylidene fluoride (PVDF) nanofibers chemically wrapped by graphene oxide (GO) lamellae (PVDF/GO nanofibers), in which the polar β-phase nanocrystals are formed and uniaxially self-oriented by the synergistic effect of mechanical stretching, high-voltage alignment, and chemical interactions. The β-phase orientation of the PVDF/GO nanofibers along their axes is observed at atomic scale through high resolution transmission electron microscopy, and the β-phase content is found to be 88.5%. The piezoelectric properties of the PVDF/GO nanofibers are investigated in terms of piezoresponse mapping, local hysteresis loops, and polarization reversal by advanced piezoresponse force microscopy. The PVDF/GO nanofibers show a desirable out-of-plane piezoelectric constant (d33) of -93.75 pm V-1 (at 1.0 wt % GO addition), which is 426% higher than that of the conventional pure PVDF nanofibers. The mechanism behind this dramatic enhancement in piezoelectricity is elucidated by three-dimensional molecular modeling.
Original language | English |
---|---|
Pages (from-to) | 1901-1910 |
Number of pages | 10 |
Journal | ACS Nano |
Volume | 11 |
Issue number | 2 |
DOIs | |
Publication status | Published - 28 Feb 2017 |
Externally published | Yes |
Keywords
- PVDF/GO nanofiber
- core-shell
- piezoelectricity
- piezoresponse force microscopy
- self-orientation
- β-phase