Abstract
Let n be a fixed positive integer, R be a 2n!-torsion free prime ring and μ, ν be a pair of generalized derivations on R. If (μ2(x)+ ν(x), xn) = 0 for all x ∈ R, then μ and ν are either left multipliers or right multipliers. Let n be a fixed positive integer, R be a noncommutative 2n!-torsion free prime ring with the center CR and d, g be a pair of derivations on R. If (d2(x) + g(x), xn) ∈ CR for all x ∈ R, then d = g = 0. Then we apply these purely algebraic techniques to obtain several range inclusion results of pair of (generalized-)derivations on a Banach algebra.
Original language | English |
---|---|
Pages (from-to) | 857-866 |
Number of pages | 10 |
Journal | Bulletin of the Korean Mathematical Society |
Volume | 46 |
Issue number | 5 |
DOIs | |
Publication status | Published - Sept 2009 |
Keywords
- Banach algebra
Fingerprint
Dive into the research topics of 'Pair of (generalized-)derivations on rings and banach algebras'. Together they form a unique fingerprint.Cite this
Wei, F., & Xiao, Z. (2009). Pair of (generalized-)derivations on rings and banach algebras. Bulletin of the Korean Mathematical Society, 46(5), 857-866. https://doi.org/10.4134/BKMS.2009.46.5.857