Numerical investigation of an asymmetric double suction centrifugal compressor with different backswept angle matching for a wide operating range

Hanzhi Zhang, Dazhong Lao, Longyu Wei, Ce Yang, Mingxu Qi

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Citation (Scopus)

Abstract

The work presented here investigates the characteristics of the different impeller backswept angle matchings for a wide stable operating range in an asymmetric double suction centrifugal compressor. The numerical simulation was employed to investigate the influence of different backswept angle matchings on the stable operating range. The aim is to propose a proper change of the backswept angle matching between two impeller sides to improve the impeller power capability and mass flow distribution, furthermore, to delay the operating mode transition and widen the stable operating range of the compressor. Firstly, the method to determine the optimum backswept angle matching obtained by the theory calculation. Then, three matching models were proposed and analyzed in detail. In three matching models, the backswept angle differences between the front and rear impeller side are 0°, 10° and 20°, respectively. The analysis mainly focused on the influence of the different backswept angle matchings on the compressor flow field characteristics and the mass flow distribution characteristics. The results show that the change of the impeller backswept angle matching can improve the mass flow distribution characteristics for two impeller sides and further reduce the stall mass flow rate of the double suction compressor. The model that the backswept angle difference is 10° can delay the operating mode transition and reduce the stall mass flow of the double suction compressor. The model that the backswept angle difference is 20° can also reduce the stall mass flow and finally enable the front impeller into the stall condition. Therefore, the proper change of the backswept angle matching can achieve the purpose of reducing the stall mass flow and widening the operating range for the double suction centrifugal compressor.

Original languageEnglish
Title of host publicationTurbomachinery
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791850800
DOIs
Publication statusPublished - 2017
EventASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition, GT 2017 - Charlotte, United States
Duration: 26 Jun 201730 Jun 2017

Publication series

NameProceedings of the ASME Turbo Expo
Volume2C-2017

Conference

ConferenceASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition, GT 2017
Country/TerritoryUnited States
CityCharlotte
Period26/06/1730/06/17

Fingerprint

Dive into the research topics of 'Numerical investigation of an asymmetric double suction centrifugal compressor with different backswept angle matching for a wide operating range'. Together they form a unique fingerprint.

Cite this