TY - JOUR
T1 - Nonsingular continuous finite-time convergent guidance law with impact angle constraints
AU - Zang, Luyao
AU - Lin, Defu
AU - Ji, Yi
N1 - Publisher Copyright:
Copyright © 2019 Luyao Zang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
PY - 2019
Y1 - 2019
N2 - This paper documents a novel nonsingular continuous guidance which can drive the line-of-sight (LOS) angular rate to converge to zero in finite time in the presence of impact angle constraints. More specifically, based on the second-order sliding mode control (SMC) theory, a second-order observer (2-OB) is presented to estimate the unknown target maneuvers, while a super twisting algorithm- (STA-) based guidance law is presented to restrict the LOS angle and angular rate. Compared with other terminal sliding mode guidance laws, the proposed guidance law absorbs the merits of the conventional linear sliding mode (LSM) and terminal sliding mode (TSM) and uses switching technique to avoid singularity. In order to verify the stability of the proposed guidance law, a finite-time bounded (FTB) function is invited to prove the boundedness of the proposed observer-controller system and a Lyapunov approach is presented to prove the finite-time convergence (FTC) of the proposed sliding system. Rigorous theoretical analysis and numerical simulations demonstrate the mentioned properties.
AB - This paper documents a novel nonsingular continuous guidance which can drive the line-of-sight (LOS) angular rate to converge to zero in finite time in the presence of impact angle constraints. More specifically, based on the second-order sliding mode control (SMC) theory, a second-order observer (2-OB) is presented to estimate the unknown target maneuvers, while a super twisting algorithm- (STA-) based guidance law is presented to restrict the LOS angle and angular rate. Compared with other terminal sliding mode guidance laws, the proposed guidance law absorbs the merits of the conventional linear sliding mode (LSM) and terminal sliding mode (TSM) and uses switching technique to avoid singularity. In order to verify the stability of the proposed guidance law, a finite-time bounded (FTB) function is invited to prove the boundedness of the proposed observer-controller system and a Lyapunov approach is presented to prove the finite-time convergence (FTC) of the proposed sliding system. Rigorous theoretical analysis and numerical simulations demonstrate the mentioned properties.
UR - http://www.scopus.com/inward/record.url?scp=85073890017&partnerID=8YFLogxK
U2 - 10.1155/2019/6024240
DO - 10.1155/2019/6024240
M3 - Article
AN - SCOPUS:85073890017
SN - 1687-5966
VL - 2019
JO - International Journal of Aerospace Engineering
JF - International Journal of Aerospace Engineering
M1 - 6024240
ER -