TY - JOUR
T1 - Multi-Agent Decision-Making Modes in Uncertain Interactive Traffic Scenarios via Graph Convolution-Based Deep Reinforcement Learning
AU - Gao, Xin
AU - Li, Xueyuan
AU - Liu, Qi
AU - Li, Zirui
AU - Yang, Fan
AU - Luan, Tian
N1 - Publisher Copyright:
© 2022 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2022/6/1
Y1 - 2022/6/1
N2 - As one of the main elements of reinforcement learning, the design of the reward function is often not given enough attention when reinforcement learning is used in concrete applications, which leads to unsatisfactory performances. In this study, a reward function matrix is proposed for training various decision-making modes with emphasis on decision-making styles and further emphasis on incentives and punishments. Additionally, we model a traffic scene via graph model to better represent the interaction between vehicles, and adopt the graph convolutional network (GCN) to extract the features of the graph structure to help the connected autonomous vehicles perform decision-making directly. Furthermore, we combine GCN with deep Q-learning and multi-step double deep Q-learning to train four decision-making modes, which are named the graph convolutional deep Q-network (GQN) and the multi-step double graph convolutional deep Q-network (MDGQN). In the simulation, the superiority of the reward function matrix is proved by comparing it with the baseline, and evaluation metrics are proposed to verify the performance differences among decision-making modes. Results show that the trained decision-making modes can satisfy various driving requirements, including task completion rate, safety requirements, comfort level, and completion efficiency, by adjusting the weight values in the reward function matrix. Finally, the decision-making modes trained by MDGQN had better performance in an uncertain highway exit scene than those trained by GQN.
AB - As one of the main elements of reinforcement learning, the design of the reward function is often not given enough attention when reinforcement learning is used in concrete applications, which leads to unsatisfactory performances. In this study, a reward function matrix is proposed for training various decision-making modes with emphasis on decision-making styles and further emphasis on incentives and punishments. Additionally, we model a traffic scene via graph model to better represent the interaction between vehicles, and adopt the graph convolutional network (GCN) to extract the features of the graph structure to help the connected autonomous vehicles perform decision-making directly. Furthermore, we combine GCN with deep Q-learning and multi-step double deep Q-learning to train four decision-making modes, which are named the graph convolutional deep Q-network (GQN) and the multi-step double graph convolutional deep Q-network (MDGQN). In the simulation, the superiority of the reward function matrix is proved by comparing it with the baseline, and evaluation metrics are proposed to verify the performance differences among decision-making modes. Results show that the trained decision-making modes can satisfy various driving requirements, including task completion rate, safety requirements, comfort level, and completion efficiency, by adjusting the weight values in the reward function matrix. Finally, the decision-making modes trained by MDGQN had better performance in an uncertain highway exit scene than those trained by GQN.
KW - GQN
KW - MDGQN
KW - connected autonomous vehicles
KW - multi-mode decision-making
KW - reward function matrix
KW - uncertain highway exit scene
UR - http://www.scopus.com/inward/record.url?scp=85132069195&partnerID=8YFLogxK
U2 - 10.3390/s22124586
DO - 10.3390/s22124586
M3 - Article
C2 - 35746364
AN - SCOPUS:85132069195
SN - 1424-8220
VL - 22
JO - Sensors
JF - Sensors
IS - 12
M1 - 4586
ER -