TY - JOUR
T1 - Molecularly imprinted polymer thin film based surface plasmon resonance sensor to detect hemoglobin
AU - Wang, Yang
AU - Zhang, Qingwen
AU - Ren, Yamin
AU - Jing, Lijing
AU - Wei, Tianxin
PY - 2014/2
Y1 - 2014/2
N2 - Molecularly imprinted polymer(MIP) films for hemoglobin detection were prepared onto the Au/Cr coated surface plasmon resonance(SPR) sensor chips by the in situ electropolymerization of 3-aminophenylboronic acid(3-APBA). The formation of the films and rebinding processes of hemoglobin were monitored by in situ electrochemical-SPR(EC-SPR) spectroscopy, with allowed real-time observation of the simultaneous changes in electrochemical and optical properties of the films. Scanning electron microscopy(SEM) and atomic force microscopy(AFM) were used to characterize the surface morphologies of the MIP films. The effects of pH, ion strength, different metal ions on rebinding Hb, the specific binding and the selective recognition were investigated. The results obtained with the molecular imprinted SPR chips indicate a good adsorption of Hb in a range of 0.0005-5 mg/mL in 0.05 mol/L sodium phosphate buffer at pH=7.0. A linear calibration curve(R 2=0.94) of the SPR sensor for Hb detection was obtained in a range of 0.05-5 mg/mL. The detection limit for hemoglobin by this method was 0.000435 mg/mL(S/N=3). Interference studies indicate that the MIP films have a good selectivity compared with the referenced proteins. The stability of the sensor was also established. Results indicate that the SPR sensor chip keeps 87.6% of its original response after 14 d of storage under dry and ambient conditions.
AB - Molecularly imprinted polymer(MIP) films for hemoglobin detection were prepared onto the Au/Cr coated surface plasmon resonance(SPR) sensor chips by the in situ electropolymerization of 3-aminophenylboronic acid(3-APBA). The formation of the films and rebinding processes of hemoglobin were monitored by in situ electrochemical-SPR(EC-SPR) spectroscopy, with allowed real-time observation of the simultaneous changes in electrochemical and optical properties of the films. Scanning electron microscopy(SEM) and atomic force microscopy(AFM) were used to characterize the surface morphologies of the MIP films. The effects of pH, ion strength, different metal ions on rebinding Hb, the specific binding and the selective recognition were investigated. The results obtained with the molecular imprinted SPR chips indicate a good adsorption of Hb in a range of 0.0005-5 mg/mL in 0.05 mol/L sodium phosphate buffer at pH=7.0. A linear calibration curve(R 2=0.94) of the SPR sensor for Hb detection was obtained in a range of 0.05-5 mg/mL. The detection limit for hemoglobin by this method was 0.000435 mg/mL(S/N=3). Interference studies indicate that the MIP films have a good selectivity compared with the referenced proteins. The stability of the sensor was also established. Results indicate that the SPR sensor chip keeps 87.6% of its original response after 14 d of storage under dry and ambient conditions.
KW - 3-Aminophenylboronic acid
KW - Hemoglobin
KW - Molecularly imprinted polymer
KW - Surface plasmon resonance
UR - http://www.scopus.com/inward/record.url?scp=84893210104&partnerID=8YFLogxK
U2 - 10.1007/s40242-013-3330-1
DO - 10.1007/s40242-013-3330-1
M3 - Article
AN - SCOPUS:84893210104
SN - 1005-9040
VL - 30
SP - 42
EP - 48
JO - Chemical Research in Chinese Universities
JF - Chemical Research in Chinese Universities
IS - 1
ER -