Abstract
The battery critical functions such as State-of-Charge (SoC) and State-of-Health (SoH) estimations, over-current, and over-/under-voltage protections mainly depend on current and voltage sensor measurements. Therefore, it is imperative to develop a reliable sensor fault diagnosis scheme to guarantee the battery performance, safety and life. This paper presents a systematic model-based fault diagnosis scheme for a battery cell to detect current or voltage sensor faults. The battery model is developed based on the equivalent circuit technique. For the diagnostic scheme implementation, the extended Kalman filter (EKF) is used to estimate the terminal voltage of battery cell, and the residual carrying fault information is then generated by comparing the measured and estimated voltage. Further, the residual is evaluated by a statistical inference method that determines the presence of a fault. To highlight the importance of battery sensor fault diagnosis, the effects of sensors faults on battery SoC estimation and possible influences are analyzed. Finally, the effectiveness of the proposed diagnostic scheme is experimentally validated, and the results show that the current or voltage sensor fault can be accurately detected.
Original language | English |
---|---|
Pages (from-to) | 6509-6527 |
Number of pages | 19 |
Journal | Energies |
Volume | 8 |
Issue number | 7 |
DOIs | |
Publication status | Published - 2015 |
Keywords
- Extended Kalman filter
- Fault diagnosis
- Faults effects analysis
- Lithium-ion battery