Abstract
Aluminum hypophosphite (AHP) is a high-efficiency phosphorus-based flame retardant with high P content, which is widely used in Polyamide 6 (PA6). However, AHP releases phosphine gas (PH3) at high temperatures, which is highly toxic to human's health and environment. Metal-organic frameworks (MOFs) have porous structure exhibiting high performance in gas adsorption. Therefore, mesoporous iron (III) carboxylate [MIL-100 (Fe)] was synthesized in this work and employed to study the adsorption capacity of toxic PH3 in PA6/AHP composite during processing. AHP was combined with melamine cyanurate (MCA) and MIL-100 (Fe) followed by blending with PA6 to prepare PA6 composites (PA6/MA and PA6/MAF). PA6/MAF with the weight ratio of 5:5 performed well in inhibiting the release of PH3 during the processing of composite as well as the accelerated thermal experiment devised by our group. Besides, PA6/MAF (5:5) showed relatively low fire hazard reflected by the reduction of the peak of heat release rate of PA6 composite from 962 to 260 kW/m2 compared with that of pure PA6 in the cone calorimeter test, and MIL-100 (Fe) along with MCA also presented synergistic effect in suppressing the emission of carbon monoxide. The subtle selection of MOFs herein has the potential to be used as a promising synergist for hazardous gases released from polymer composites to improve the occupational and fire safety in the society.
Original language | English |
---|---|
Article number | 122604 |
Journal | Journal of Hazardous Materials |
Volume | 395 |
DOIs | |
Publication status | Published - 5 Aug 2020 |
Keywords
- Aluminum hypophosphite
- Flame retardancy
- Inhibition
- MOFs
- Phosphine