Microstructures and properties of Nb–Si-based alloys with B addition

Liang Shun Luo, Fu Xin Wang, Xian Yu Meng, Yan Jin Xu, Liang Wang, Yan Qing Su*, Jing Jie Guo, Heng Zhi Fu

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

The Nb–16Si–18Ti–xB (at%, similarly hereinafter, x = 0, 1, 2, 3) alloys were prepared by arc melting in a water-cooled copper crucible. The influences of B addition on their microstructures and properties were based on the data of X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and electronic universal material testing machine. It is found that the addition of B promotes the formation of α-Nb5Si3 phase and suppresses the formation of Nb3Si phase. B addition also tends Nb–16Si–18Ti alloy to form the hypereutectic structures. The content of silicide phases shows a trend of firstly decreasing and then increasing in Nb–16Si–18Ti–xB (x = 0, 1, 2, 3) alloys. The size of Nb solid solution (Nbss) phase increases in Nb–16Si–18Ti–xB (x = 0, 1, 2, 3) alloys after heat treatment at 1523 K for 10 h. The room temperature compression strength of Nb–16Si–18Ti alloy increases firstly and then decreases with B addition. The high-temperature compression strength of Nb–16Si–18Ti alloy decreases firstly and then increases with B addition. It is found that the volume and size of silicide phases have a synergistic effect on the compression strength of Nb–Ti–Si-based alloys.

Original languageEnglish
Pages (from-to)2801-2808
Number of pages8
JournalRare Metals
Volume42
Issue number8
DOIs
Publication statusPublished - Aug 2023
Externally publishedYes

Keywords

  • B element
  • Compression yield strength
  • Nb–Si alloys
  • Phase stability

Fingerprint

Dive into the research topics of 'Microstructures and properties of Nb–Si-based alloys with B addition'. Together they form a unique fingerprint.

Cite this