Abstract
Let (X, H μ) be an abstract Wiener space, E (ε, K) denote the metric entropy of a set K ⊂ X. If K is not a slim set, then we prove that 0 < lim inf ε→0 ε2 E(ε). In particular, if lim inf3→0 ε2E (ε, K) = 0, then K is a slim set. Moreover, if K is compact and contained in the closure of B0H (R) in X, where B0H := {h ∈ H: ∥h∥H < R} is a ball in H, then lim supε→0 ε2 E(ε, K) < ∞.
Original language | English |
---|---|
Pages (from-to) | 559-566 |
Number of pages | 8 |
Journal | Bulletin des Sciences Mathematiques |
Volume | 129 |
Issue number | 7 |
DOIs | |
Publication status | Published - Aug 2005 |
Externally published | Yes |
Keywords
- Capacity
- Metric entropy
- Slim set
- Small ball