Metric entropies of sets in abstract Wiener space

Xicheng Zhang*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)

Abstract

Let (X, H μ) be an abstract Wiener space, E (ε, K) denote the metric entropy of a set K ⊂ X. If K is not a slim set, then we prove that 0 < lim inf ε→0 ε2 E(ε). In particular, if lim inf3→0 ε2E (ε, K) = 0, then K is a slim set. Moreover, if K is compact and contained in the closure of B0H (R) in X, where B0H := {h ∈ H: ∥h∥H < R} is a ball in H, then lim supε→0 ε2 E(ε, K) < ∞.

Original languageEnglish
Pages (from-to)559-566
Number of pages8
JournalBulletin des Sciences Mathematiques
Volume129
Issue number7
DOIs
Publication statusPublished - Aug 2005
Externally publishedYes

Keywords

  • Capacity
  • Metric entropy
  • Slim set
  • Small ball

Fingerprint

Dive into the research topics of 'Metric entropies of sets in abstract Wiener space'. Together they form a unique fingerprint.

Cite this