Abstract
Sandwich composite panels (SCPs) with carbon fiber reinforced plastic (CFRP) facings and honeycomb core are susceptible to impact damage. In this study, a method is proposed to improve the impact resistance and energy absorption capacity of SCPs by filling the honeycomb core with a shear-thickening gel (STG) mixed with silica particles. The low-velocity impact responses of the SCPs have been analyzed including the drop hammer ricochet from front facing, ricochet from back facing, and complete perforation. The load-displacement curves and damage patterns indicate that STG-filled honeycomb core could effectively decrease the penetration depth and reduce impact damage of the SCPs. Finite element simulations based on the Coupled Euler-Lagrangian (CEL) method were conducted to reveal the underlying mechanism for the enhanced anti-impact capacity of the SCP filled with STG.
Original language | English |
---|---|
Article number | 101136 |
Journal | Composites Communications |
Volume | 32 |
DOIs | |
Publication status | Published - Jun 2022 |
Keywords
- Energy absorption
- Low-velocity impact
- Sandwich composite panels
- Shear thickening gel