Learning to Segment and Represent Motion Primitives from Driving Data for Motion Planning Applications

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

11 Citations (Scopus)

Abstract

Developing an intelligent vehicle which can perform human-like actions requires the ability to learn basic driving skills from a large amount of naturalistic driving data. The algorithms will become efficient if we could decompose the complex driving tasks into motion primitives which represent the elementary compositions of driving skills. Therefore, the purpose of this paper is to segment unlabeled trajectory data into a library of motion primitives. By applying a probabilistic inference based on an iterative Expectation-Maximization algorithm, our method segments the collected trajectories while learning a set of motion primitives represented by the dynamic movement primitives. The proposed method utilizes the mutual dependencies between the segmentation and representation of motion primitives and the driving-specific based initial segmentation. By utilizing this mutual dependency and the initial condition, this paper presents how we can enhance the performance of both the segmentation and the motion primitive library establishment. We also evaluate the applicability of the primitive representation method to imitation learning and motion planning algorithms. The model is trained and validated by using the driving data collected from the Beijing Institute of Technology intelligent vehicle platform. The results show that the proposed approach can find the proper segmentation and establish the motion primitive library simultaneously.

Original languageEnglish
Title of host publication2018 IEEE Intelligent Transportation Systems Conference, ITSC 2018
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1408-1414
Number of pages7
ISBN (Electronic)9781728103235
DOIs
Publication statusPublished - 7 Dec 2018
Event21st IEEE International Conference on Intelligent Transportation Systems, ITSC 2018 - Maui, United States
Duration: 4 Nov 20187 Nov 2018

Publication series

NameIEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC
Volume2018-November

Conference

Conference21st IEEE International Conference on Intelligent Transportation Systems, ITSC 2018
Country/TerritoryUnited States
CityMaui
Period4/11/187/11/18

Fingerprint

Dive into the research topics of 'Learning to Segment and Represent Motion Primitives from Driving Data for Motion Planning Applications'. Together they form a unique fingerprint.

Cite this