LEARNING-BASED MIDCOURSE GUIDANCE FOR VELOCITY MAXIMIZATION WITH ANGULAR CONSTRAINT

Tianyu Jin, Hongyan Li*, Shaoming He, Yufei Li

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

This paper investigates the midcourse guidance problem for velocity maximization with constrained arrival angle and proposes a learning-based guidance algorithm to solve this problem. A full-envelope training set is first constructed by optimal state-action pairs generated by nonlinear programming (NLP) software. Then, the deep neural network (DNN) is trained based on the training set by supervised learning approach. With the well-trained DNN, optimal guidance command can be directly generated in accordance with the current states. To improve the transportability of the trained DNN, transfer learning is also used to improve the generalizability and adaptivity of the proposed algorithm. Compared with the computationally-expensive NLP algorithms, the proposed approach requires less computational power hence is more convenient for online implementation. Extensive numerical simulations are conducted to support the proposed algorithm.

Original languageEnglish
Title of host publication32nd Congress of the International Council of the Aeronautical Sciences, ICAS 2021
PublisherInternational Council of the Aeronautical Sciences
ISBN (Electronic)9783932182914
Publication statusPublished - 2021
Event32nd Congress of the International Council of the Aeronautical Sciences, ICAS 2021 - Shanghai, China
Duration: 6 Sept 202110 Sept 2021

Publication series

Name32nd Congress of the International Council of the Aeronautical Sciences, ICAS 2021

Conference

Conference32nd Congress of the International Council of the Aeronautical Sciences, ICAS 2021
Country/TerritoryChina
CityShanghai
Period6/09/2110/09/21

Keywords

  • Deep Neural Network
  • Learning approach
  • Midcourse guidance
  • Velocity maximization

Fingerprint

Dive into the research topics of 'LEARNING-BASED MIDCOURSE GUIDANCE FOR VELOCITY MAXIMIZATION WITH ANGULAR CONSTRAINT'. Together they form a unique fingerprint.

Cite this