Intrusion detection on internet of vehicles via combining log-ratio oversampling, outlier detection and metric learning

Fusheng Jin*, Mengnan Chen, Weiwei Zhang, Ye Yuan, Shuliang Wang

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

40 Citations (Scopus)

Abstract

In recent years, the Internet of vehicles (IoV) technology becomes a research hotspot. However, it also becomes a hotbed for malicious attacks. In the IoV, frequent data transmission and complex connections among numerous different nodes increase the complexity and diversity of malicious attacks. In order to realize the accurate and rapid detection of malicious attacks in the IoV environment, in this paper, an intrusion detection method is proposed by combining oversampling, outlier detection and metric learning. The proposed approach improves intrusion detection effect in three main ways: 1) it oversamples the minority classes based on a novel strategy, 2) it introduces a new feature with basis of imbalance ratio, and 3) it reduces the outliers and rescales original samples actively to make the decision boundary clearer by combining outlier detection and distance metric learning. Furthermore, genetic algorithm is used to extract the optimal subset of features. The experimental results show that the proposed method can achieve 98.51% accuracy and maintain 0.82% false alarm rate on UNSW-NB15 dataset. Also, it outperforms the existing methods on ROAD, Car-Hacking and CAN-intrusion dataset for in-vehicle communications.

Original languageEnglish
Pages (from-to)814-831
Number of pages18
JournalInformation Sciences
Volume579
DOIs
Publication statusPublished - Nov 2021

Keywords

  • Class imbalance
  • Distance metric learning
  • IoV
  • Network intrusion detection
  • Outlier detection
  • Oversampling

Fingerprint

Dive into the research topics of 'Intrusion detection on internet of vehicles via combining log-ratio oversampling, outlier detection and metric learning'. Together they form a unique fingerprint.

Cite this