Integrated computational approach for heat exchangers design

Chung Hyun Goh, Nelson Fumo, Zhenjun Ming

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Heat exchangers are present in a variety of processes and industries. Increasing system efficiency is the most effective method and one of the greatest concerns in reducing energy consumption. In this paper we applied an integrated design approach to heat exchangers design, which combines the Integrated Multi-Scale Robust Design (IMRD) with the Grey Relational Analysis (GRA). As a case study, a double-pipe heat exchanger was used. The IMRD performs the horizontal integration in the Process-Structure-Property-Performance (P-S-P-P) relationship through forward modeling and inductive exploration processes, while the vertical integration in the P-S-P-P relationship is accomplished by adopting localization and homogenization concepts. For the proposed application into heat exchangers, the IMRD explores solution spaces and suggests feasible solution ranges for improving the thermal-hydraulic performance, while the GRA evaluates the relative importance of design variables in the heat exchanger. In the preliminary study, it is found that the feasible solution range is significantly reduced for maximizing the heat transfer rate, compared to the equally balanced function, while the feasible solution range is less sensitive in minimizing annular pump power. To validate the IMRD simulation results from a CFD model are used.

Original languageEnglish
Title of host publicationHeat Transfer and Thermal Engineering
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791850626
DOIs
Publication statusPublished - 2016
EventASME 2016 International Mechanical Engineering Congress and Exposition, IMECE 2016 - Phoenix, United States
Duration: 11 Nov 201617 Nov 2016

Publication series

NameASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
Volume8

Conference

ConferenceASME 2016 International Mechanical Engineering Congress and Exposition, IMECE 2016
Country/TerritoryUnited States
CityPhoenix
Period11/11/1617/11/16

Fingerprint

Dive into the research topics of 'Integrated computational approach for heat exchangers design'. Together they form a unique fingerprint.

Cite this