Infrared–Visible Image Fusion through Feature-Based Decomposition and Domain Normalization

Weiyi Chen, Lingjuan Miao, Yuhao Wang*, Zhiqiang Zhou, Yajun Qiao

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)

Abstract

Infrared–visible image fusion is valuable across various applications due to the complementary information that it provides. However, the current fusion methods face challenges in achieving high-quality fused images. This paper identifies a limitation in the existing fusion framework that affects the fusion quality: modal differences between infrared and visible images are often overlooked, resulting in the poor fusion of the two modalities. This limitation implies that features from different sources may not be consistently fused, which can impact the quality of the fusion results. Therefore, we propose a framework that utilizes feature-based decomposition and domain normalization. This decomposition method separates infrared and visible images into common and unique regions. To reduce modal differences while retaining unique information from the source images, we apply domain normalization to the common regions within the unified feature space. This space can transform infrared features into a pseudo-visible domain, ensuring that all features are fused within the same domain and minimizing the impact of modal differences during the fusion process. Noise in the source images adversely affects the fused images, compromising the overall fusion performance. Thus, we propose the non-local Gaussian filter. This filter can learn the shape and parameters of its filtering kernel based on the image features, effectively removing noise while preserving details. Additionally, we propose a novel dense attention in the feature extraction module, enabling the network to understand and leverage inter-layer information. Our experiments demonstrate a marked improvement in fusion quality with our proposed method.

Original languageEnglish
Article number969
JournalRemote Sensing
Volume16
Issue number6
DOIs
Publication statusPublished - Mar 2024

Keywords

  • dense attention
  • dynamic instance normalization
  • infrared and visible image fusion
  • non-local Gaussian filter
  • unified feature space

Fingerprint

Dive into the research topics of 'Infrared–Visible Image Fusion through Feature-Based Decomposition and Domain Normalization'. Together they form a unique fingerprint.

Cite this