Abstract
Singlet fission (SF) materials are a kind of promising material for breaking the solar cell efficiency limit. Here we rebuild the four-electron spin Hamiltonian under our coordinate system and present an improved model described by the population evolution equations on fluorescence decay (FD) dynamics that contain several detailed physical processes. The improved model for total random molecular orientation gives a more consistent fitting on the experimental data [G. B. Piland et al., J. Phys. Chem. C, 2013, 117, 1224] about time-resolved FD of amorphous rubrene thin films in the presence of a strong magnetic field. The fitting can reflect the relative rates of the real physical processes. Further on, our results show two kinds of magnetic field effect for the variety of two molecular relative orientations with respect to each other and the magnetic field by investigating the singlet projection and FD dynamics of the system.
Original language | English |
---|---|
Pages (from-to) | 2153-2165 |
Number of pages | 13 |
Journal | Physical Chemistry Chemical Physics |
Volume | 21 |
Issue number | 4 |
DOIs | |
Publication status | Published - 2019 |