Hypersonic poration of supported lipid bilayers

Yao Lu, Jurriaan Huskens, Wei Pang, Xuexin Duan

Research output: Contribution to journalArticlepeer-review

13 Citations (Scopus)

Abstract

Hypersound (ultrasound of gigahertz (GHz) frequency) has been recently introduced as a new type of membrane-disruption method for cells, vesicles and supported lipid bilayers (SLBs), with the potential to improve the efficiency of drug and gene delivery for biomedical applications. Here, we fabricated an integrated microchip, composed of a nano-electromechanical system (NEMS) resonator and a gold electrode as the extended gate of a field effect transistor (EGFET), to study the effects of hypersonic poration on an SLB in real time. The current recordings revealed that hypersound enabled ion conduction through the SLB by inducing transient nanopores in the membrane, which act as the equivalent of ion channels and show gating behavior. The mechanism of pore formation was studied by cyclic voltammetry (CV), atomic force microscopy (AFM) and laser scanning microscopy (LSM), which support the causality between hypersound-triggered deformation and the reversible membrane disruption of the SLB. This finding contributes to the development of an approach to reversibly control membrane permeability by hypersound.

Original languageEnglish
Pages (from-to)782-790
Number of pages9
JournalMaterials Chemistry Frontiers
Volume3
Issue number5
DOIs
Publication statusPublished - May 2019
Externally publishedYes

Fingerprint

Dive into the research topics of 'Hypersonic poration of supported lipid bilayers'. Together they form a unique fingerprint.

Cite this