TY - JOUR
T1 - Hybrid Modality Metric Learning for Visible-Infrared Person Re-Identification
AU - Zhang, La
AU - Guo, Haiyun
AU - Zhu, Kuan
AU - Qiao, Honglin
AU - Huang, Gaopan
AU - Zhang, Sen
AU - Zhang, Huichen
AU - Sun, Jian
AU - Wang, Jinqiao
N1 - Publisher Copyright:
© 2022 Association for Computing Machinery.
PY - 2022/2
Y1 - 2022/2
N2 - Visible-infrared person re-identification (Re-ID) has received increasing research attention for its great practical value in night-time surveillance scenarios. Due to the large variations in person pose, viewpoint, and occlusion in the same modality, as well as the domain gap brought by heterogeneous modality, this hybrid modality person matching task is quite challenging. Different from the metric learning methods for visible person re-ID, which only pose similarity constraints on class level, an efficient metric learning approach for visible-infrared person Re-ID should take both the class-level and modality-level similarity constraints into full consideration to learn sufficiently discriminative and robust features. In this article, the hybrid modality is divided into two types, within modality and cross modality. We first fully explore the variations that hinder the ranking results of visible-infrared person re-ID and roughly summarize them into three types: within-modality variation, cross-modality modality-related variation, and cross-modality modality-unrelated variation. Then, we propose a comprehensive metric learning framework based on four kinds of paired-based similarity constraints to address all the variations within and cross modality. This framework focuses on both class-level and modality-level similarity relationships between person images. Furthermore, we demonstrate the compatibility of our framework with any paired-based loss functions by giving detailed implementation of combing it with triplet loss and contrastive loss separately. Finally, extensive experiments of our approach on SYSU-MM01 and RegDB demonstrate the effectiveness and superiority of our proposed metric learning framework for visible-infrared person Re-ID.
AB - Visible-infrared person re-identification (Re-ID) has received increasing research attention for its great practical value in night-time surveillance scenarios. Due to the large variations in person pose, viewpoint, and occlusion in the same modality, as well as the domain gap brought by heterogeneous modality, this hybrid modality person matching task is quite challenging. Different from the metric learning methods for visible person re-ID, which only pose similarity constraints on class level, an efficient metric learning approach for visible-infrared person Re-ID should take both the class-level and modality-level similarity constraints into full consideration to learn sufficiently discriminative and robust features. In this article, the hybrid modality is divided into two types, within modality and cross modality. We first fully explore the variations that hinder the ranking results of visible-infrared person re-ID and roughly summarize them into three types: within-modality variation, cross-modality modality-related variation, and cross-modality modality-unrelated variation. Then, we propose a comprehensive metric learning framework based on four kinds of paired-based similarity constraints to address all the variations within and cross modality. This framework focuses on both class-level and modality-level similarity relationships between person images. Furthermore, we demonstrate the compatibility of our framework with any paired-based loss functions by giving detailed implementation of combing it with triplet loss and contrastive loss separately. Finally, extensive experiments of our approach on SYSU-MM01 and RegDB demonstrate the effectiveness and superiority of our proposed metric learning framework for visible-infrared person Re-ID.
KW - Cross-modality
KW - Metric learning
KW - Visible-infrared person re-identification
UR - http://www.scopus.com/inward/record.url?scp=85127445356&partnerID=8YFLogxK
U2 - 10.1145/3473341
DO - 10.1145/3473341
M3 - Article
AN - SCOPUS:85127445356
SN - 1551-6857
VL - 18
JO - ACM Transactions on Multimedia Computing, Communications and Applications
JF - ACM Transactions on Multimedia Computing, Communications and Applications
IS - 1s
M1 - 25
ER -