High range resolution wideband terahertz FMCW radar with a large depth of field

Weidong Hu, Zhihao Xu*, Huanyu Jiang, Yang Liu, Zhiyu Yao, Kaiqi Zhang, Leo P. Ligthart

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

4 Citations (Scopus)

Abstract

Terahertz frequency modulation continuous wave (THz FMCW) imaging technology has been widely used in non-destructive testing (NDT) applications of non-metallic materials. However, THz FMCW real-aperture radar usually has a narrow bandwidth and small depth of field, thus restricting the application of THz FMCW NDT. In this paper, a wideband THz signal (220–500 GHz) generation method is proposed by time-division multiplexing. Moreover, a dual-band quasi-optical design with a large depth of field is proposed based on the THz Bessel beam, and a high-quality range profile is obtained. Especially, a signal fusion extended Fourier analysis algorithm without prior knowledge is proposed to further enhance the range profile accuracy, which improves the range resolution to 0.28 mm (λ/3, center frequency 360 GHz). The effectiveness and advantages of the proposed system are verified by artificially constructing composite materials.

Original languageEnglish
Pages (from-to)7189-7196
Number of pages8
JournalApplied Optics
Volume61
Issue number24
DOIs
Publication statusPublished - 20 Aug 2022

Fingerprint

Dive into the research topics of 'High range resolution wideband terahertz FMCW radar with a large depth of field'. Together they form a unique fingerprint.

Cite this