Hierarchical Error Compensation Method for Two-Degree-of-Freedom Manipulator Positioning Error in Hybrid Robots

Yuqing He*, Jiabo Zhang, Yi Yue, Jingyu Liu, Ke Wen, Yinghao Zhou, Jizhi Yang, Yunpeng Wang

*Corresponding author for this work

Research output: Contribution to journalConference articlepeer-review

Abstract

In this paper, taking a two-degree-of-freedom parallelogram serial manipulator of a hybrid robot as an example, a hierarchical error compensation method that combines geometric and non-geometric error compensation is proposed. First, we establish the geometric kinematic modeling and error model and use the Levenberg-Marquardt (L-M) method to identify the geometric error parameters. Then, we use the grid interpolation method to compensate for non-geometric errors, thereby improving the overall positioning accuracy of the manipulator. Finally, a simulation is presented to verify the correctness and effectiveness of the proposed method. The results show that the positioning accuracy is improved from 4.8568 mm to 0.0036 mm, and the attitude error is improved from 0.9437° to 0.0105°.

Original languageEnglish
Article number012025
JournalJournal of Physics: Conference Series
Volume2658
Issue number1
DOIs
Publication statusPublished - 2023
Externally publishedYes
Event2023 3rd International Conference on Mechatronics Technology and Aerospace Engineering, ICMTAE 2023 - Nanchang, China
Duration: 15 Sept 202317 Sept 2023

Fingerprint

Dive into the research topics of 'Hierarchical Error Compensation Method for Two-Degree-of-Freedom Manipulator Positioning Error in Hybrid Robots'. Together they form a unique fingerprint.

Cite this