Graphene–Aluminum nitride NEMS resonant infrared detector

Zhenyun Qian, Yu Hui, Fangze Liu, Sungho Kang, Swastik Kar, Matteo Rinaldi*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

65 Citations (Scopus)

Abstract

The use of micro-/nanoelectromechanical resonators for the room temperature detection of electromagnetic radiation at infrared frequencies has recently been investigated, showing thermal detection capabilities that could potentially outperform conventional microbolometers. The scaling of the device thickness in the nanometer range and the achievement of high infrared absorption in such a subwavelength thickness, without sacrificing the electromechanical performance, are the two key challenges for the implementation of fast, high-resolution micro-/nanoelectromechanical resonant infrared detectors. In this paper, we show that by using a virtually massless, high-electrical-conductivity, and transparent graphene electrode, floating at the van der Waals separation of a few angstroms from a piezoelectric aluminum nitride nanoplate, it is possible to implement ultrathin (460 nm) piezoelectric nanomechanical resonant structures with improved electromechanical performance (>50% improved frequency × quality factor) and infrared detection capabilities (>100 × improved infrared absorptance) compared with metal-electrode counterparts, despite their reduced volumes. The intrinsic infrared absorption capabilities of a submicron thin graphene–aluminum nitride plate backed with a metal electrode are investigated for the first time and exploited for the first experimental demonstration of a piezoelectric nanoelectromechanical resonant thermal detector with enhanced infrared absorptance in a reduced volume. Moreover, the combination of electromagnetic and piezoelectric resonances provided by the same graphene–aluminum nitride-metal stack allows the proposed device to selectively detect short-wavelength infrared radiation (by tailoring the thickness of aluminum nitride) with unprecedented electromechanical performance and thermal capabilities. These attributes potentially lead to the development of uncooled infrared detectors suitable for the implementation of high performance, miniaturized and power-efficient multispectral infrared imaging systems.

Original languageEnglish
Article number16026
JournalMicrosystems and Nanoengineering
Volume2
DOIs
Publication statusPublished - 2016
Externally publishedYes

Keywords

  • Aluminum nitride
  • Graphene
  • Infrared detector
  • MEMS
  • NEMS
  • Piezoelectric
  • Resonant sensor

Fingerprint

Dive into the research topics of 'Graphene–Aluminum nitride NEMS resonant infrared detector'. Together they form a unique fingerprint.

Cite this