Friction-Wear and Noise Characteristics of Friction Disks with Circular Texture

Biao Ma, Weichen Lu, Liang Yu*, Cenbo Xiong, Guoqiang Dang, Xiaobo Chen

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)

Abstract

The reduction of friction-induced noise is a crucial research area for enhancing vehicle comfort, and this paper proposes a method based on circular pit texture to achieve this goal. We conducted a long-term sliding friction test using a pin-on-disc friction and a wear test bench to verify the validity of this method. To compare the friction noise of different surfaces, texture units with varying line densities were machined on the surface of friction disk samples. The resulting friction-wear and noise characteristics of the samples were analyzed in conjunction with the microscopic morphology of the worn surfaces. The results indicate that surfaces with textures can delay the onset of squeal noise, and the pattern of its development differs from that of smooth surfaces. The noise reduction effect is most evident due to the proper distribution of textures that can form furrow-like wear marks at the wear interface. The finite element results demonstrate that this morphology can improve pressure distribution at the leading point and reduce the tendency of system instability.

Original languageEnglish
Article number2337
JournalMaterials
Volume17
Issue number10
DOIs
Publication statusPublished - May 2024

Keywords

  • caliper disc brake
  • growth rate
  • noise
  • texture
  • wear

Fingerprint

Dive into the research topics of 'Friction-Wear and Noise Characteristics of Friction Disks with Circular Texture'. Together they form a unique fingerprint.

Cite this