Forward Scattering and Volterra Renormalization for Acoustic Wavefield Propagation in Vertically Varying Media

Jie Yao*, Anne Cécile Lesage, Fazle Hussain, Donald J. Kouri

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

8 Citations (Scopus)

Abstract

We extend the full wavefield modeling with forward scattering theory and Volterra Renormalization to a vertically varying two-parameter (velocity and density) acoustic medium. The forward scattering series, derived by applying Born-Neumann iterative procedure to the Lippmann-Schwinger equation (LSE), is a well known tool for modeling and imaging. However, it has limited convergence properties depending on the strength of contrast between the actual and reference medium or the angle of incidence of a plane wave component. Here, we introduce the Volterra renormalization technique to the LSE. The renormalized LSE and related Neumann series are absolutely convergent for any strength of perturbation and any incidence angle. The renormalized LSE can further be separated into two sub-Volterra type integral equations, which are then solved noniteratively. We apply the approach to velocity-only, density-only, and both velocity and density perturbations. We demonstrate that this Volterra Renormalization modeling is a promising and efficient method. In addition, it can also provide insight for developing a scattering theory-based direct inversion method.

Original languageEnglish
Pages (from-to)353-373
Number of pages21
JournalCommunications in Computational Physics
Volume20
Issue number2
DOIs
Publication statusPublished - 1 Aug 2016
Externally publishedYes

Keywords

  • Acoustic modeling
  • Volterra renormalization
  • scattering theory
  • velocity and density variation

Fingerprint

Dive into the research topics of 'Forward Scattering and Volterra Renormalization for Acoustic Wavefield Propagation in Vertically Varying Media'. Together they form a unique fingerprint.

Cite this