TY - GEN
T1 - Flexural wave control via origami-based elastic metamaterials
AU - Zhang, Mingkai
AU - Yang, Jinkyu
AU - Zhu, Rui
N1 - Publisher Copyright:
© 2019 SPIE.
PY - 2019
Y1 - 2019
N2 - The overall mechanical properties of an origami can be programed by its pattern of crease, which introduces various interesting mechanical properties, such as tunable stiffness, multistability and coupled deformations. Once obtaining the knowledge about the properties of the side plates, the creases and the folding procedure, the mechanical response of origami can be completely determined. Therefore, origami with highly designable and tunable abilities offers new possibilities for the metamaterial design. In this research, we aim to combine origami with elastic metamaterials. By introducing the tunable twisting origami structure into the subwavelength-scale resonator design, a three-dimensional elastic metamaterial with low-frequency dynamic performance has been proposed, which, at the same time, has the advantages of lightweight and controllablility. The geometrical nonlinearity of the origami building block is first studied, which indicates that the large structural deformation can be harnessed to tune the effective stiffness of the origami. Further research discovers the quantitative relationship between the overall stiffness and each geometric parameter through the potential energy analysis. Then, the designed origami cell is used as an attachable resonator to control the flexural wave propagation in a metamaterial beam. Finally, both static and dynamic experiments are conducted on the origami cell and the metamaterial beam to verify the tunable stiffness and the on-demand bandgaps, respectively.
AB - The overall mechanical properties of an origami can be programed by its pattern of crease, which introduces various interesting mechanical properties, such as tunable stiffness, multistability and coupled deformations. Once obtaining the knowledge about the properties of the side plates, the creases and the folding procedure, the mechanical response of origami can be completely determined. Therefore, origami with highly designable and tunable abilities offers new possibilities for the metamaterial design. In this research, we aim to combine origami with elastic metamaterials. By introducing the tunable twisting origami structure into the subwavelength-scale resonator design, a three-dimensional elastic metamaterial with low-frequency dynamic performance has been proposed, which, at the same time, has the advantages of lightweight and controllablility. The geometrical nonlinearity of the origami building block is first studied, which indicates that the large structural deformation can be harnessed to tune the effective stiffness of the origami. Further research discovers the quantitative relationship between the overall stiffness and each geometric parameter through the potential energy analysis. Then, the designed origami cell is used as an attachable resonator to control the flexural wave propagation in a metamaterial beam. Finally, both static and dynamic experiments are conducted on the origami cell and the metamaterial beam to verify the tunable stiffness and the on-demand bandgaps, respectively.
KW - Adaptable bandgap
KW - Flexural wave control
KW - Metamaterials
KW - Origami
UR - http://www.scopus.com/inward/record.url?scp=85069781379&partnerID=8YFLogxK
U2 - 10.1117/12.2514179
DO - 10.1117/12.2514179
M3 - Conference contribution
AN - SCOPUS:85069781379
T3 - Proceedings of SPIE - The International Society for Optical Engineering
BT - Health Monitoring of Structural and Biological Systems XIII
A2 - Fromme, Paul
A2 - Su, Zhongqing
PB - SPIE
T2 - Health Monitoring of Structural and Biological Systems XIII 2019
Y2 - 4 March 2019 through 7 March 2019
ER -