Extreme Learning Machine-Based Thermal Model for Lithium-Ion Batteries of Electric Vehicles under External Short Circuit

Ruixin Yang, Rui Xiong*, Weixiang Shen, Xinfan Lin

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

113 Citations (Scopus)

Abstract

External short circuit (ESC) of lithium-ion batteries is one of the common and severe electrical failures in electric vehicles. In this study, a novel thermal model is developed to capture the temperature behavior of batteries under ESC conditions. Experiments were systematically performed under different battery initial state of charge and ambient temperatures. Based on the experimental results, we employed an extreme learning machine (ELM)-based thermal (ELMT) model to depict battery temperature behavior under ESC, where a lumped-state thermal model was used to replace the activation function of conventional ELMs. To demonstrate the effectiveness of the proposed model, we compared the ELMT model with a multi-lumped-state thermal (MLT) model parameterized by the genetic algorithm using the experimental data from various sets of battery cells. It is shown that the ELMT model can achieve higher computational efficiency than the MLT model and better fitting and prediction accuracy, where the average root mean squared error (RMSE) of the fitting is 0.65 °C for the ELMT model and 3.95 °C for the MLT model, and the RMES of the prediction under new data set is 3.97 °C for the ELMT model and 6.11 °C for the MLT model.

Original languageEnglish
Pages (from-to)395-405
Number of pages11
JournalEngineering
Volume7
Issue number3
DOIs
Publication statusPublished - Mar 2021

Keywords

  • Battery safety
  • Electric vehicles
  • External short circuit
  • Extreme learning machine
  • Temperature prediction

Fingerprint

Dive into the research topics of 'Extreme Learning Machine-Based Thermal Model for Lithium-Ion Batteries of Electric Vehicles under External Short Circuit'. Together they form a unique fingerprint.

Cite this