Extraspecific Manifestation of Nanoheater's Position Effect on Distinctive Cellular Photothermal Responses

Thang Do Cong, Zhimin Wang, Ming Hu, Qinyu Han, Bengang Xing*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

24 Citations (Scopus)

Abstract

Subcellular localization of nanoparticles plays critical roles in precision medicine that can facilitate an in-depth understanding of disease etiology and achieve accurate theranostic regulation via responding to the aiding stimuli. The photothermal effect is an extensively employed strategy that converts light into heat stimulation to induce localized disease ablation. Despite diverse manipulations that have been investigated in photothermal nanotheranostics, influences of nanoheaters' subcellular distribution and their molecular mechanism on cellular heat response remain elusive. Herein, we disclose the biological basis of distinguishable thermal effects at subcellular resolution by localizing photothermal upconversion nanoparticles into specific locations of cell compartments. Upon 808 nm light excitation, the lysosomal cellular uptake initialized by poly(ethylenimine)-modified nanoheaters promoted mitochondria apoptosis through the activation of Bid protein, whereas the cell surface nanoheaters anchored via metabolic glycol biosynthesis triggered necrosis by direct perturbation of the membrane structure. Intriguingly, these two different thermolyses revealed similar levels of heat shock protein expression in live cells. This study stipulates insights underlying the different subcellular positions of nanoparticles for the selective thermal response, which provides valuable perspectives on optimal precision nanomedicine.

Original languageEnglish
Pages (from-to)5836-5844
Number of pages9
JournalACS Nano
Volume14
Issue number5
DOIs
Publication statusPublished - 26 May 2020
Externally publishedYes

Keywords

  • NIR light
  • heat response
  • lanthanide
  • photothermal
  • upconversion nanoparticles

Fingerprint

Dive into the research topics of 'Extraspecific Manifestation of Nanoheater's Position Effect on Distinctive Cellular Photothermal Responses'. Together they form a unique fingerprint.

Cite this

Cong, T. D., Wang, Z., Hu, M., Han, Q., & Xing, B. (2020). Extraspecific Manifestation of Nanoheater's Position Effect on Distinctive Cellular Photothermal Responses. ACS Nano, 14(5), 5836-5844. https://doi.org/10.1021/acsnano.0c00951