Evolution of individual quantum Hall edge states in the presence of disorder

Kai Tong Wang, Fuming Xu, Yanxia Xing, Hong Kang Zhao*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

By using the Bloch eigenmode matching approach, we numerically study the evolution of individual quantum Hall edge states with respect to disorder. As demonstrated by the two-parameter renormalization group flow of the Hall and Thouless conductances, quantum Hall edge states with high Chern number n are completely different from that of the n = 1 case. Two categories of individual edge modes are evaluated in a quantum Hall system with high Chern number. Edge states from the lowest Landau level have similar eigenfunctions that are well localized at the system edge and independent of the Fermi energy. On the other hand, at fixed Fermi energy, the edge state from higher Landau levels exhibit larger expansion, which results in less stable quantum Hall states at high Fermi energies. By presenting the local current density distribution, the effect of disorder on eigenmode-resolved edge states is distinctly demonstrated.

Original languageEnglish
Article number137306
JournalFrontiers of Physics
Volume13
Issue number4
DOIs
Publication statusPublished - 1 Aug 2018

Keywords

  • Landau level
  • quantum Hall edge states
  • quantum phase transition

Fingerprint

Dive into the research topics of 'Evolution of individual quantum Hall edge states in the presence of disorder'. Together they form a unique fingerprint.

Cite this