Encoding physiological signals as images for affective state recognition using convolutional neural networks

Guangliang Yu, Xiang Li, Dawei Song*, Xiaozhao Zhao, Peng Zhang, Yuexian Hou, Bin Hu

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

9 Citations (Scopus)

Abstract

Affective state recognition based on multiple modalities of physiological signals has been a hot research topic. Traditional methods require designing hand-crafted features based on domain knowledge, which is time-consuming and has not achieved a satisfactory performance. On the other hand, conducting classification on raw signals directly can also cause some problems, such as the interference of noise and the curse of dimensionality. To address these problems, we propose a novel approach that encodes different modalities of data as images and use convolutional neural networks (CNN) to perform the affective state recognition task. We validate our aproach on the DECAF dataset in comparison with two state-of-the-art methods, i.e., the Support Vector Machines (SVM) and Random Forest (RF). Experimental results show that our aproach outperforms the baselines by 5% to 9%.

Original languageEnglish
Title of host publication2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2016
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages812-815
Number of pages4
ISBN (Electronic)9781457702204
DOIs
Publication statusPublished - 13 Oct 2016
Externally publishedYes
Event38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2016 - Orlando, United States
Duration: 16 Aug 201620 Aug 2016

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
Volume2016-October
ISSN (Print)1557-170X

Conference

Conference38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2016
Country/TerritoryUnited States
CityOrlando
Period16/08/1620/08/16

Fingerprint

Dive into the research topics of 'Encoding physiological signals as images for affective state recognition using convolutional neural networks'. Together they form a unique fingerprint.

Cite this