Abstract
We report the design, fabrication, and measurements of a dual-reflective, single-crystal silicon-based micromirror that can perform circumferential scanning for endoscopic optical coherence tomography (EOCT). Full 360-deg optical scan angle (OSA) can be achieved by using a dual-reflective mirror with ±45-deg (or 90-deg) mechanical scan angle (MSA), where each reflective mirror surface contributes a 180-deg optical scanning. A novel surface- and bulk-combined micromachining process based on silicon on insulator (SOI) wafers is developed for fabricating the dual-reflective micromirror. The mirror flatness is maintained by the single-crystal-silicon device layer of SOI wafers, and aluminum is coated on both sides for reflection. A fabricated device demonstrated about half circumferential scanning range at resonance of 425 Hz. Other measured data include the radii of curvature, -129 mm (front surface) and 132 mm (back surface), and the reflectance, 86.3% (front surface) and 84.2% (back surface). This micromirror has the potential to realize full-circumferential-scanning EOCT imaging.
Original language | English |
---|---|
Article number | 013030 |
Journal | Journal of Micro/ Nanolithography, MEMS, and MOEMS |
Volume | 8 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2009 |
Externally published | Yes |
Keywords
- Dual-reflective micromirror
- Endoscopic optical coherence tomography (EOCT)
- Full-circumferential scanning (FCS)