Effects of Dimethyl Methylphosphonate, Aluminum Hydroxide, Ammonium Polyphosphate, and Expandable Graphite on the Flame Retardancy and Thermal Properties of Polyisocyanurate-Polyurethane Foams

Yanlin Liu, Jiyu He*, Rongjie Yang

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

68 Citations (Scopus)

Abstract

For the first time, a new flame-retardant formula based on dimethyl methylphosphonate (DMMP), aluminum hydroxide (ATH), ammonium polyphosphate (APP), and expandable graphite (EG) was applied to polyisocyanurate-polyurethane foams and found to exhibit a high flame-retardant efficiency and low cost, to be environmentally friendly, and to allow for the reduction of the amount of solid flame retardants added. The multiple effects were evaluated based on thermal conductivity tests, compressive strength tests, limiting oxygen index (LOI) measurements, cone calorimetry tests, thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). The results showed that ATH can form "villi"-like substances during the combustion process. In the presence of ATH and APP, dense spherical substances were produced. When EG was added to the system, a wormlike carbon layer that adsorbed phosphate-containing acid resulting from APP decomposition was formed during the decomposition process, so that the carbon layer was denser. The combined effects of the villi-like and spherical substances as well as the wormlike carbon layer can block heat and flame propagation from being transferred to the unburned foam.

Original languageEnglish
Pages (from-to)5876-5884
Number of pages9
JournalIndustrial and Engineering Chemistry Research
Volume54
Issue number22
DOIs
Publication statusPublished - 10 Jun 2015

Fingerprint

Dive into the research topics of 'Effects of Dimethyl Methylphosphonate, Aluminum Hydroxide, Ammonium Polyphosphate, and Expandable Graphite on the Flame Retardancy and Thermal Properties of Polyisocyanurate-Polyurethane Foams'. Together they form a unique fingerprint.

Cite this