Driving forces of national and regional carbon intensity changes in China: Temporal and spatial multiplicative structural decomposition analysis

Ye Cao, Yuhuan Zhao*, Hongxia Wang, Hao Li, Song Wang, Ya Liu, Qiaoling Shi, Yongfeng Zhang

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    62 Citations (Scopus)

    Abstract

    With the increasing pressure on reducing CO 2 emissions, China promised to reduce carbon intensity by 60–65% by 2030 from 2005 levels. This study aims at identifying the driving forces of national and regional carbon intensity changes in China at multiple levels by a newly extended multiplicative structural decomposition analysis. Attribution analysis is further adopted to identify sectors with large intensity-reduction potential. National and regional carbon intensity changes during 2007–2012 are decomposed into three determinants: intensity (or efficiency) effect, input structure effect and final demand effect. Temporal decomposition results suggest that 29.0% decline of national carbon intensity is mainly due to intensity effect, while input structure and final demand effect drive the increment of national carbon intensity. Eight regions are divided into two groups: carbon intensity in Northwest, South Coast and Northeast increased due to input structure and final demand effect; carbon intensity in other regions decreased due to intensity effect and final demand effect. Investment and export are the dominant final demand categories to carbon intensity decline in most regions. Spatial decomposition results reveal the huge contribution discrepancy of driving forces among 30 provinces, and 30 provinces are accordingly classified into four groups. For most regions, simultaneously optimizing input structure and final demand are preferred in sectors with large intensity-reduction potential like Mining, Manufacture, Metals and metal productions and Production and supply of electricity, gas and water. Targeted intensity-reduction strategies at multiple levels are suggested.

    Original languageEnglish
    Pages (from-to)1380-1410
    Number of pages31
    JournalJournal of Cleaner Production
    Volume213
    DOIs
    Publication statusPublished - 10 Mar 2019

    Keywords

    • Attribution analysis
    • Carbon intensity
    • China
    • Driving forces
    • Multiplicative structural decomposition analysis

    Fingerprint

    Dive into the research topics of 'Driving forces of national and regional carbon intensity changes in China: Temporal and spatial multiplicative structural decomposition analysis'. Together they form a unique fingerprint.

    Cite this