Diversifying Neural Dialogue Generation via Negative Distillation

Yiwei Li, Shaoxiong Feng, Bin Sun, Kan Li

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

8 Citations (Scopus)

Abstract

Generative dialogue models suffer badly from the generic response problem, limiting their applications to a few toy scenarios. Recently, an interesting approach, namely negative training, has been proposed to alleviate this problem by reminding the model not to generate high-frequency responses during training. However, its performance is hindered by two issues, ignoring low-frequency but generic responses and bringing low-frequency but meaningless responses. In this paper, we propose a novel negative training paradigm, called negative distillation, to keep the model away from the undesirable generic responses while avoiding the above problems. First, we introduce a negative teacher model that can produce query-wise generic responses, and then the student model is required to maximize the distance with multi-level negative knowledge. Empirical results show that our method outperforms previous negative training methods significantly.

Original languageEnglish
Title of host publicationNAACL 2022 - 2022 Conference of the North American Chapter of the Association for Computational Linguistics
Subtitle of host publicationHuman Language Technologies, Proceedings of the Conference
PublisherAssociation for Computational Linguistics (ACL)
Pages407-418
Number of pages12
ISBN (Electronic)9781955917711
Publication statusPublished - 2022
Event2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL 2022 - Seattle, United States
Duration: 10 Jul 202215 Jul 2022

Publication series

NameNAACL 2022 - 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Proceedings of the Conference

Conference

Conference2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL 2022
Country/TerritoryUnited States
CitySeattle
Period10/07/2215/07/22

Fingerprint

Dive into the research topics of 'Diversifying Neural Dialogue Generation via Negative Distillation'. Together they form a unique fingerprint.

Cite this