Deep Spatial Adaptive Network for Real Image Demosaicing

Tao Zhang, Ying Fu*, Cheng Li

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

14 Citations (Scopus)

Abstract

Demosaicing is the crucial step in the image processing pipeline and is a highly ill-posed inverse problem. Recently, various deep learning based demosaicing methods have achieved promising performance, but they often design the same nonlinear mapping function for different spatial locations and do not well consider the difference of mosaic pattern for each color. In this paper, we propose a deep spatial adaptive network (SANet) for real image demosaicing, which can adaptively learn the nonlinear mapping function for different locations. The weights of spatial adaptive convolution layer are generated by the pattern information in the receptive filed. Besides, we collect a paired real demosaicing dataset to train and evaluate the deep network, which can make the learned demosaicing network more practical in the real world. The experimental results show that our SANet outperforms the state-of-the-art methods under both comprehensive quantitative metrics and perceptive quality in both noiseless and noisy cases.

Original languageEnglish
Title of host publicationAAAI-22 Technical Tracks 3
PublisherAssociation for the Advancement of Artificial Intelligence
Pages3326-3334
Number of pages9
ISBN (Electronic)1577358767, 9781577358763
Publication statusPublished - 30 Jun 2022
Event36th AAAI Conference on Artificial Intelligence, AAAI 2022 - Virtual, Online
Duration: 22 Feb 20221 Mar 2022

Publication series

NameProceedings of the 36th AAAI Conference on Artificial Intelligence, AAAI 2022
Volume36

Conference

Conference36th AAAI Conference on Artificial Intelligence, AAAI 2022
CityVirtual, Online
Period22/02/221/03/22

Fingerprint

Dive into the research topics of 'Deep Spatial Adaptive Network for Real Image Demosaicing'. Together they form a unique fingerprint.

Cite this