TY - JOUR
T1 - Deep Learning and Adjoint Method Accelerated Inverse Design in Photonics
T2 - A Review
AU - Pan, Zongyong
AU - Pan, Xiaomin
N1 - Publisher Copyright:
© 2023 by the authors.
PY - 2023/7
Y1 - 2023/7
N2 - For photonic applications, the inverse design method plays a critical role in the optimized design of photonic devices. According to its two ingredients, inverse design in photonics can be improved from two aspects: to find solutions to Maxwell’s equations more efficiently and to employ a more suitable optimization scheme. Various optimization algorithms have been employed to handle the optimization: the adjoint method (AM) has become the one of the most widely utilized ones because of its low computational cost. With the rapid development of deep learning (DL) in recent years, inverse design has also benefited from DL algorithms, leading to a new pattern of photon inverse design. Unlike the AM, DL can be an efficient solver of Maxwell’s equations, as well as a nice optimizer, or even both, in inverse design. In this review, we discuss the development of the AM and DL algorithms in inverse design, and the advancements, advantages, and disadvantages of the AM and DL algorithms in photon inverse design.
AB - For photonic applications, the inverse design method plays a critical role in the optimized design of photonic devices. According to its two ingredients, inverse design in photonics can be improved from two aspects: to find solutions to Maxwell’s equations more efficiently and to employ a more suitable optimization scheme. Various optimization algorithms have been employed to handle the optimization: the adjoint method (AM) has become the one of the most widely utilized ones because of its low computational cost. With the rapid development of deep learning (DL) in recent years, inverse design has also benefited from DL algorithms, leading to a new pattern of photon inverse design. Unlike the AM, DL can be an efficient solver of Maxwell’s equations, as well as a nice optimizer, or even both, in inverse design. In this review, we discuss the development of the AM and DL algorithms in inverse design, and the advancements, advantages, and disadvantages of the AM and DL algorithms in photon inverse design.
KW - adjoint method
KW - deep learning
KW - inverse design
KW - photonics
UR - http://www.scopus.com/inward/record.url?scp=85166339198&partnerID=8YFLogxK
U2 - 10.3390/photonics10070852
DO - 10.3390/photonics10070852
M3 - Review article
AN - SCOPUS:85166339198
SN - 2304-6732
VL - 10
JO - Photonics
JF - Photonics
IS - 7
M1 - 852
ER -